Math 3450 - Homework # 4 Functions

Part 1 - Composition of functions

- 1. Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2$ and g(x) = 2x + 1.
 - (a) Compute $(f \circ g)(2)$ and $(g \circ f)(-1)$.
 - (b) Give formulas for $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 2. Let $f : \mathbb{Z} \times \mathbb{Z} \to Z$ be given by f(m, n) = m + n and $g : \mathbb{Z} \to Z \times \mathbb{Z}$ be given by g(x) = (x, x).
 - (a) Compute $(g \circ f)(1, 2)$ and $(f \circ g)(-1)$
 - (b) Find formulas for $(g \circ f)(m, n)$ and $(f \circ g)(x)$.
- 3. Let $f : \mathbb{Z} \times \mathbb{Z} \to Z \times \mathbb{Z}$ be given by f(m, n) = (3m 4n, 2m + n) and $g : \mathbb{Z} \times \mathbb{Z} \to Z \times \mathbb{Z}$ be given by g(m, n) = (5m + n, m).
 - (a) Compute $(g \circ f)(-1, 1)$ and $(f \circ g)(2, 3)$
 - (b) Find formulas for $(g \circ f)(m, n)$ and $(f \circ g)(m, n)$.
- 4. Let $A = \{1, 2, 3, 4\}$. Let $i_A : A \to A$ be the identity function on A. That is, $i_A(x) = x$ for all $x \in A$.
 - (a) Let $f: A \to A$ where f(1) = 3, f(2) = 1, f(3) = 2, and f(4) = 4. Draw a picture of f. Draw a picture of f^{-1} . Show that $f \circ f^{-1} = i_A$ and $f^{-1} \circ f = i_A$.
 - (b) Let $g: A \to A$ where g(1) = 1, g(2) = 3, g(3) = 4, and g(4) = 2. Draw a picture of g. Draw a picture of g^{-1} . Show that $g \circ g^{-1} = i_A$ and $g^{-1} \circ g = i_A$.
- 5. Give an example of $f: A \to B$ and $g: B \to C$ where the following are true:
 - (a) f is not onto, but $g \circ f$ is onto.
 - (b) g is not one-to-one, but $g \circ f$ is one-to-one.

Part 2 - Well-defined functions

6. Let $f : \mathbb{Q} \to \mathbb{Z}$ be defined by f(m/n) = m. For example, f(2/9) = 2 and f(5/10) = 5. Show that f is not a well-defined function.

Part 3 - Applying functions to sets

- 7. Let $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2 2$.
 - (a) Compute $f(\{1, 3, -1, 2\})$
 - (b) Compute f([0,1]) where $[0,1] = \{x \mid 0 \le x \le 1\}$.
 - (c) Compute $f^{-1}(\{-4, -3, -2, 1, 6\})$
 - (d) Compute $f^{-1}([0,1))$ where $[0,1) = \{y \mid 0 \le y < 1\}$.
 - (e) Compute $f^{-1}([-3, -1))$ where $[-3, -1) = \{y \mid -3 \le y < -1\}.$

8. Let
$$f : \mathbb{R} \to \mathbb{R}$$
 where $f(x) = \begin{cases} x - 1 & \text{if } x \leq 0 \\ x^2 & \text{if } x \leq 0 \end{cases}$

- (a) Compute $f(\{-10, 0, 5, 7\})$
- (b) Compute f([-1,2]) where $[-1,2] = \{x \mid -1 \le x \le 2\}$.
- (c) Compute $f^{-1}(\{-2, -1, 1, 6\})$
- (d) Compute $f^{-1}([-3,2])$ $[-3,2] = \{y \mid -3 \le y \le 2\}$
- 9. Let $f : \mathbb{Z} \times \mathbb{Z} \to Z$ be given by f(m, n) = m + n and $g : \mathbb{Z} \to Z \times \mathbb{Z}$ be given by g(x) = (x, x).
 - (a) Calculate $g^{-1}(A)$ where $A = \{(0,0), (1,1), (1,2)\}$
 - (b) Calculate $f^{-1}(B)$ where $B = \{0\}$
- 10. Let $f : \mathbb{Z} \times \mathbb{Z} \to Z \times \mathbb{Z}$ be given by f(m, n) = (3m 4n, 2m + n) and $g : \mathbb{Z} \times \mathbb{Z} \to Z \times \mathbb{Z}$ be given by g(m, n) = (5m + n, m).
 - (a) Calculate $g^{-1}(A)$ where $A = \{(0,0), (1,-1)\}$
 - (b) Calculate $f^{-1}(B)$ where $B = \{(0,0), (1,-1)\}$